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A new model for the transport equation for the turbulence energy dissipation rate
ε and for the anisotropy of the dissipation rate tensor εij , consistent with the near-
wall limits, is derived following the term-by-term approach and using results of
direct numerical simulations (DNS) for several generic wall-bounded flows. Based
on the two-point velocity covariance analysis of Jovanović, Ye & Durst (1995) and
reinterpretation of the viscous term, the transport equation is derived in terms of the
‘homogeneous’ part εh of the energy dissipation rate. The algebraic expression for the
components of εij was then reformulated in terms of εh, which makes it possible to
satisfy the exact wall limits without using any wall-configuration parameters. Each
term in the new equation is modelled separately using DNS information. The rational
vorticity transport theory of Bernard (1990) was used to close the mean curvature term
appearing in the dissipation equation. A priori evaluation of εij , as well as solving the
new dissipation equation as a whole using DNS data for quantities other than εij , for
flows in a pipe, plane channel, constant-pressure boundary layer, behind a backward-
facing step and in an axially rotating pipe, all show good near-wall behaviour of all
terms. Computations of the same flows with the full model in conjunction with the
low-Reynolds number transport equation for uiuj , using εh instead of ε, agree well
with the direct numerical simulations.

1. Introduction
The transport equation for the turbulence energy dissipation rate

ε = ν
∂ui

∂xk

∂ui

∂xk

has been widely used to close single-point k − ε eddy-viscosity and second-moment
(Reynolds stress transport) models.† Motivation for modelling and solving an equa-
tion for ε comes from the fact that ε appears as the sole viscous sink in the transport
equation for the turbulence kinetic energy, hence no need for modelling. Furthermore,
the classic similarity theory (though valid only for equilibrium turbulence) suggests ε

† Although ε does not represent the true dissipation rate τijsij = 1
2
ν(∂ui/∂xj + ∂uj/∂xi)2, where τij

is the fluctuating viscous stress and sij the fluctuating strain rate, in the viscous and inner turbulent
region close to a smooth solid surface (and everywhere else) the difference term ν(∂2uiuj/∂xi∂xj),
representing an ‘extra’ viscous diffusion was found from DNS data for a channel flow to be less
than 2% of the total dissipation, and hence, negligible (Bradshaw & Perot 1993).
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as a convenient parameter to define characteristic turbulence time or length scales in
conjunction with the turbulence energy k, or with components of the turbulent stress
tensor uiuj .

Two major concerns have been frequently expressed regarding the practice of using
ε and its transport equation for closure purposes. First, it has been argued that the
characteristic turbulence scale in single-point closure should be expressed in terms
of the spectral energy transfer rate, which equals the energy dissipation rate only in
the case of spectral equilibrium. Second, the model equation for ε has been formally
linked to its exact antecedent, although there is no physical correspondence among
various terms, except for the rate of change and molecular diffusion. These are the
only terms which can be treated in the exact form, and which ensure that the equation
retains the standard conservative form. The inherent inability of single-point closure
to account for any spectral dynamics places a serious limitation on overcoming the
first concern. However, the standard model equation for ε, derived heuristically (with
turbulence energy production providing the main and only source term) and tuned
in some simple equilibrium flows, has often been interpreted more as an empirical
equation for the spectral transfer, than for true ε.

Recent direct numerical simulations (DNS) provided information about individual
terms in the ε equation, so that the model for each term can be verified. Based on
term-by-term scrutiny, the model ε equation should reflect better the true dynamics of
the exact ε equation, as demonstrated in this paper. This, in turn, should diminish the
above mentioned spectral transfer–dissipation rate inconsistency since all unknown
terms in all transport equations that constitute a model will be modelled with ε
provided from the model equation that now mimics the exact dissipation equation. Of
course, the prerequisite is that the term-by-term modelling satisfies not only simple
equilibrium flows such as in a fully developed plane channel, but also more complex
flows where spectral transfer may deviate from the dissipation rate.

The DNS of some simple flows showed that even at local energy equilibrium
conditions the models for major interactions in the transport equation for ε do not
adequately reflect the corresponding terms in the exact ε equation. This is particularly
pronounced in low-Reynolds-number near-wall flow regions where the dynamics of
dissipative correlation is strongly affected both by viscosity and by the non-viscous
blocking effect of a solid wall. The success in reproducing ε reasonably well, even at
low Reynolds numbers and near walls, is achieved by ad hoc tuning of the equation
as a whole; this is, in fact, a procedure whose success depends on the compensation
of errors made in the models for each term. The application of such models in
non-equilibrium situations, different from those in which the models were calibrated,
often leads to unsatisfactory results.

Various extensions of the ε equation have been proposed to account for extra
strain effects, streamline curvature, rotation, buoyancy, as well as for differentiating
the effects of rotational and irrotational strain, or for accounting for spectral non-
equilibrium. While such extensions yielded improvements for some classes of flows,
they failed in others. The lack of success in extending the modelled equation for ε has
been the main reason for a persistent use of the rudimentary form (single source and
sink terms) despite notable shortcomings proven over the years of extensive model
validation.

Most of the activities in refining and extending the model ε equation have
focused on the effects of viscosity and wall proximity. These modifications have
been considered essential for predicting wall phenomena – friction and heat transfer
in wall-bounded flows. These require integration of the modelled equations up to the
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wall, instead of using standard (equilibrium) wall functions to bridge the near-wall
viscous layer.

Bradshaw, Launder & Lumley (1991), showed that none of the available models
could reproduce a behaviour of ε very close to the wall that would agree with
the results of DNS. In fact most models predict the maximum value of ε to be
away from the wall (at about y+ ≈ 10) whereas the DNS results indicate that ε
reaches its maximum value at the wall. More recently several modifications have
been suggested which remedied this deficiency (Nagano & Shimada 1993; Rodi &
Mansour 1993; Kawamura & Kawashima 1995). Although based on scaling or some
other theoretical arguments, most proposals end with compromising solutions to
match the wall-limiting behaviour, mainly by virtue of one or more additional terms,
which compensate for the model deficiency very close to the wall.

In second-moment (Reynolds-stress) closure models the problem becomes even
more challenging because of a need to model each component of the dissipation rate
tensor

εij = 2ν
∂ui

∂xk

∂ui

∂xk
,

which represents the sink of turbulent stresses. While a transport equation for εij can
be derived and modelled (e.g. Durbin & Speziale 1991; Tagawa, Nagano & Tsuji
1991; Speziale & Gatski 1997; Oberlack 1997), such an equation is burdened by
even greater uncertainties and a number of additional empirical coefficients which
need to be determined. Because εij is expected to approach an isotropic state ( 2

3
εδij)

at high Reynolds numbers and at a sufficiently large distance from a solid wall or
phase interface, solving six additional differential transport equations for εij does not
seem rational for practical computations. Besides, in view of the large uncertainties
remaining in modelling other terms in the equations for turbulent stresses uiuj , e.g.
the pressure–strain correlation which acts as a major source or sink of individual
stress components, such an effort at present does not seem worthwhile. An algebraic
modelling of εij , while solving the transport equation for its half trace ε, seems a more
viable approach, provided improvement of the ε equation can be achieved, particularly
in flows where εij is strongly anisotropic.

In this paper we revisit the dissipation equation and present some results from a
different approach appropriate to low-Reynolds-number near-wall flows. There are
two aspects that distinguish the present approach from others. First, the derivation
of the equation for ε is based on the transport equation for the two-point correlation
(e.g. Jovanović, Ye & Durst 1995). Second, a term-by-term modelling of the individual
terms in the dissipation equation is applied, combined with the algebraic relationship
for εij in term of ε, stress and dissipation tensor invariants and the turbulence Reynolds
number Ret.

The present interpretation provides a better reproduction of the DNS results on
the basis of different interpretation of the viscous term in the stress equation, with
the aid of the dynamic equation for the two-point velocity covariance. It is shown
that the new equation for the ‘homogeneous’ dissipation rate:

εh = ε− 1
2
ν
∂2k

∂xl∂xl
(1.1)

differs from the standard one only in the factor 1/2 in the viscous diffusion term,
which is important only very close to a solid wall. However, this new formulation
offers several advantages.
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2. The viscous term in uiuj equation
The exact transport equation for the turbulent stress tensor contains the viscous

term which in the original derivation takes the form

Duiuj
Dt

= −
(
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)
− ∂uiujuk

∂xk

+
1

ρ

(
ui
∂p

∂xj
+ uj

∂p

∂xi

)
+ ν

(
ui

∂2uj

∂xk∂xk
+ uj

∂2ui

∂xk∂xk

)
︸ ︷︷ ︸

Vij

. (2.1)

Our interest here lies with the viscous terms Vij . It is customary to split the viscous
term into two parts: one representing the viscous diffusion of the turbulent stress
tensor uiuj; the other, εij , representing the viscous dissipation rate of uiuj:

Vij = ν
∂2uiuj

∂xk∂xk
− 2ν

∂ui

∂xk

∂uj

∂xk
= Dν

ij − εij . (2.2)

The first term, of course, requires no closure. Our interest is in the dissipation tensor.
Modelling this term is the subject of the next section.

2.1. Current modelling practice for εij

Most current models employ an algebraic relationship for the deviatoric components
of the stress dissipation-rate tensor εij in terms of the deviatoric of the stress tensor,
uiuj , which assumes direct proportionality between the anisotropy of the large-scale
stress-bearing eddies, and the small-scale dissipative eddies, i.e.

eij = fs aij , (2.3)

where

eij =
εij

ε
− 2

3
δij , aij =

uiuj

k
− 2

3
δij , (2.4)

and fs is a blending function which relaxes the direct proportionality and ensures
a smooth transition from small-scale anisotropic to isotropic turbulence. This as-
sumption is not physically justified since the anisotropy of the stress-bearing motion,
especially at higher Reynolds numbers, is not well correlated with usually more
isotropic dissipative scales. Nevertheless, it has proved to be a reasonable approxi-
mation provided fs is specified adequately. Equation (2.3) is often used in a more
common form which gives the components of the dissipation rate directly in terms of
the Reynolds stresses (Hanjalić & Launder 1976):

εij = ε

[
(1− fs) 2

3
δij +

uiuj

k
fs

]
. (2.5)

The function fs is expressed in terms of the turbulence Reynolds number Ret =
k2/(νε), chosen such that fs → 0 as Ret → ∞, so that the dissipation tensor becomes
isotropic: εij = 2

3
εδij . If the Reynolds number approaches zero, the function fs takes

the value of unity, ensuring the low-Re limit of (2.5), i.e. εij = (uiuj/k)ε. The common
practice in the second-moment closure models is to solve the equation for ε and then
to employ equation (2.5) to compute the components of εij . Modelling the tensor
εij thus reduces to modelling the function fs. Early models express fs in terms of
the turbulence Reynolds number Ret = k2/νε, assuming that the anisotropy of εij is
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Authors fs fd F

HL (1976)
1

1 + 0.1Ret
0 0

KLY (1985) exp

(
−Ret

40

)
1 5/2

LT (1993) exp(−20A2) 1 3/2

GK (1991) 1−√A 1 3/2

HJ (1993) 1−√AE2 1

1 + 0.1Ret
3/2

Table 1. Different proposals for the ‘blending’ function fs in the model for εij; HL – Hanjalić &
Launder; KLY – Kebede, Launder & Younis; LT – Launder & Tselepidakis; GK – Gilbert & Kleiser;
HJ – Hanjalić & Jakirlić.
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Figure 1. Profiles of the ‘blending’ function fs in (a) fully developed channel flow and
(b) reattaching region of the backward-facing step flow. For key to initials, see table 1 caption.

solely a consequence of viscous effects. The DNS revealed that the anisotropy in εij
in wall-bounded flows extends far beyond the viscous near-wall region (e.g. Mansour,
Kim & Moin 1988; Durbin & Speziale 1991) and is due to non-viscous wall blocking
and eddy flattening effects.

Subsequently, several authors expressed fs in terms of second or third stress
invariants A2 = aijaji and A3 = aijajkaki, or the ‘flatness’ parameter A = 1−9/8(A2−A3)
(Gilbert & Kleiser 1991; Launder & Tselepidakis 1993). Lee & Reynolds (1987)
suggested that small-scale anisotropy can be characterized by the anisotropy of the
vorticity correlation, which can be linked to εij . Following the argument that strong
anisotropy and the eddy flattening effect by a solid wall are felt by the small-scale
dissipative motion even if the Reynolds number has a relatively high value (Durbin
& Speziale 1991), Hanjalić & Jakirlić (1993) introduced the flatness parameter of the
small-scale dissipative motion, E = 1− 9

8
(E2−E3), where E2 = eijeji and E3 = eijejkeki

are the second and third invariants of the anisotropy of εij . The proposed function fs
involves both E and A, i.e. fs = 1 − √AE2. A priori validation against DNS results

for a plane channel, using fs =
√
E2/A2 as a reference target (that follows from

equation (2.3)), shows satisfactory results. Table 1 shows several propositions, which
are compared with

√
E2/A2 in figure 1. Other algebraic interpolations have also

been proposed for εij; e.g. Hallbäck, Groth & Johansson (1990) used the tensorial



144 S. Jakirlić and K. Hanjalić
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Figure 2. Components of εij in fully developed channel flows at two bulk Reynolds numbers:
(a) Rem = 5600 and (b) Rem = 13 750. Symbols: DNS, Kim et al.; lines: HJ εij model, equations
(2.6)–(2.8).

expansion up to the quadratic term in terms of stress anisotropy aij . This expression
was derived for homogeneous flows and compares poorly with DNS data for a
channel flow (Jakirlić 1997).

A major difficulty with algebraic interpolation schemes in the form of equation
(2.5) or similar is that they do not satisfy the near-wall limits for components ε12

and ε22. In order to overcome this shortcoming, several modifications have been
proposed. Launder & Reynolds (1983) proposed modifications involving the unit
normal vectors, by which they distingushed wall limits for different components of
εij . However, their correction expression extended too far away from the wall into the
region where ε seems to follow closely the (uiuj/k)ε pattern, to reduce gradually to
the isotropic expression 2

3
εδij . In order to remedy this deficiency, Hanjalić & Jakirlić

(1993) modified the expression of Launder & Reynolds (1983) by introducing another
function in terms of turbulence Reynolds number. The resulting expression is

εij = (1− fs) 2
3
δijε+ fsε

∗
ij , (2.6)

where

ε∗ij =
ε

k

uiuj + (uiuknjnk + ujuknink + ukulnknlninj)fd
1 + F(upuq/k) npnqfd

, (2.7)

where

fs = 1−√AE2, fd = (1 + 0.1Ret)
−1, np = (0, 1, 0), F = 3

2
. (2.8)

A priori testing by feeding in the DNS data for uiuj and ε in equations (2.6) to
(2.8) gave good agreement with DNS results for all diagonal components of εij for
turbulent flow in a plane channel, as shown in figure 2 for two Reynolds numbers.

The agreement for the off-diagonal component, ε12, is less satisfactory, though the
discrepancy is hardly visible in the figures because in the viscous wall region this
component is much smaller than the diagonal ones, and a unique scale was used for
all components.

Of course, the real quality of predictions, when using the complete model, depends
on the ability to predict accurately the energy dissipation rate ε and the stress tensor
uiuj from the transport equations. It should also be noted that, despite success, the
use of normal unit vectors in (2.7) is not very convenient for flows with complex
geometries. Recently, Craft & Launder (1996) proposed an algebraic expression in
which, instead of wall-normal unit vectors, the wall orientation and its configuration
were accounted for by gradients of the turbulence kinetic energy and stress-flatness
invariant parameter A, defined above. Excellent reproduction of the DNS data for
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all components of εij was reported for free-surface flow, shear-free wall and plane
Couette flow. No results were published for separating or rotating flows. However,
their expression is rather complex and the model for εij is a part of a complex
nonlinear second-moment closure.

We propose here an alternative route which ensures a better term-by-term repro-
duction and eliminates to a great extent the shortcomings mentioned above.

2.2. Two-point results for εij

The transport equation for the two-point correlation (Jovanović et al. 1995) highlights
the terms of interest as

D(ui)A(uj)B
Dt

= · · ·+ ν

[
(ui)A

(
∂2uj

∂xk∂xk

)
B

+ (uj)B

(
∂2ui

∂xk∂xk

)
A

]
︸ ︷︷ ︸

VAB
i,j

= · · ·+ VAB
i,j . (2.9)

Introducing the local coordinate system with the origin at the midpoint between A
and B and noting that ξk = xBk −xAk and xABk = 1

2
(xAk +xBk ), the viscous term VAB

i,j can be
written in the following form for the general case of non-isotropic, non-homogeneous
turbulence:

VAB
i,j = 1

2
ν

(
∂2

∂xk∂xk

)
AB

(ui)A(uj)B + 2ν
∂2

∂ξl∂ξl
(ui)A(uj)B. (2.10)

In homogeneous turbulence all derivatives with respect to (xk)AB vanish and, for
A→ B, VAB

i,j → Vij represents the dissipation in a homogeneous flow, εh:

VAB
i,j → Vij =

[
2ν

∂2

∂ξl∂ξl
(ui)A(uj)B

]
ξ=0

= −εhij . (2.11)

In inhomogeneous turbulence, for A→ B:

VAB
i,j → Vij = 1

2
ν
∂2uiuj

∂xk∂xk
− εhij = 1

2
Dν
ij − εhij . (2.12)

Comparison with the single-point derivation, equation (2.2), yields

εij = εhij + 1
2
Dν
ij . (2.13)

The dissipation tensor has contributions due to the inhomogeneity of the flow that
are usually treated as diffusive transport. Clearly, no algebraic interpolation for the
εij can account for the dissipation due to gradients of the Reynolds stresses.

2.3. Modelling implications

In view of the deficiency of the algebraic interpolation formula for εij discussed
above, it is clear that equation (2.5) can only be used for the homogeneous part of the
dissipation rate tensor,

εhij = (1− fs) 2
3
δijε

h + fs
uiuj

k
εh. (2.14)

The components of the full dissipation-rate tensor can now be obtained from equa-
tion (2.13) where Dν

ij is the viscous diffusion of the corresponding stress component,
computed from the solution of the stress transport equations.

An advantage of using this approach is immediately apparent: the expression
for εij satisfies exactly the wall limits of each normalized dissipation component



146 S. Jakirlić and K. Hanjalić
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Figure 3. Components of εij in fully developed channel flows at two bulk Reynolds numbers:
(a) Rem = 5600 and (b) Rem = 22 000. Lines: equations (2.13–2.14); symbols as figure 2.

(εij/ε)(k/uiuj), (no sum on repeated indices) which is 1 for i = j = 1, i = j = 3 and
i = 1, j = 3, and equals 2 if i = 1, j = 2 and i = 2, j = 3. A slight discrepancy
appears for the wall-normal component, i = j = 2, for which the model gives

ε22

ε

k

u2
2

= 3.5 (2.15)

instead of the exact 4. Thus the correction proposed by Launder & Reynolds (1983),
which has been used in many low-Re second-moment closures to satisfy the exact
wall limits of εij/uiuj , is no longer necessary: the wall limits are satisfied directly by
considering only the homogeneous portion of the dissipation rate, i.e. using equations
(2.13) and (2.14).

The term-by-term scrutiny of expressions (2.13) and (2.14) using the DNS data for
uiuj and ε show that using εh leads to a notable improvement: the components of εij
for the plane channel flow at two Reynolds numbers show excellent agreement with
the DNS results, except for a discrepancy in the off-diagonal component ε12, figure 3
(compare with figure 2). Good results, particularly close to the wall, are also obtained
for fully developed flow in an axially rotating pipe at various rotation intensities up
to N = Wwall/Um = 10, figure 4, and for flow behind a backward-facing step. Figure 5
shows results of a priori testing at representative locations in all three characteristic
regions: in the recirculation bubble, around reattachment and in the recovery zone
behind it.

The deficiency in reproducing accurately the off-diagonal components is discussed
in more detail in § 5. In channel flows, the only non-zero off-diagonal component
ε12 is much smaller than the diagonal ones, and this discrepancy is hardly visible in
figure 3. However, an enlargement shows a substantial difference in the region of y+

from 10 to 50, where the DNS data show two peaks, whereas the model gives only
one (the same was found for a weakly rotating pipe flow). It is interesting to note
that the new model, equations (2.13) and (2.14), reproduces better the off-diagonal
components in the non-equilibrium flows considered, with two peaks just as DNS. We
return to this problem in § 5, where we propose some remedies that further improve
the model for εij .

2.4. Obtaining εh

Equations (2.13) and (2.14) now make it possible to determine εij .
To close these expressions it is necessary to provide εh. It can be obtained either
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from a conventional low-Re ε equation using the fact that

εh = ε− 1
2
Dν
k, (2.16)

or a separate equation for εh can be solved. The latter approach is preferred for
computational convenience: in fact the stress transport equations can be written with
εhij as the sink term with corresponding reduction of the viscous diffusion term by
factor of two:

Duiuj
Dt

= · · ·+ 1

2

∂

∂xk

(
ν
∂uiuj

∂xk

)
︸ ︷︷ ︸

Dν
ij

−εhij + · · · . (2.17)

In such a way we can dispense with the need to compute separately the stress diffusion
Dν
ij required for conversion of εhij into εij and vice versa (equation (2.13)), thus avoiding

possible numerical inaccuracy (computing second derivatives of uiuj)†, except for a
posteriori validation purposes when comparisons are to be made with data for εij
or its trace ε. Derivation of the equation for εh from the equation for the two-point
correlation yields approximately (some higher order terms omitted, Jovanović et al.
1995)

Dεh

Dt
=

Dε

Dt
− 1

2

∂

∂xk

(
ν
∂εh

∂xk

)
︸ ︷︷ ︸

Dν
ε

, (2.18)

where Dε/Dt can be replaced by the right-hand side of the conventional or any other
low-Re ε equation. It should be noted that the definition of ε̃ (the ‘isotropic’ part of
the dissipation rate, ε̃|w = 0) used in some models to handle the near-wall behaviour
and the wall boundary conditions should be modified:

ε̃h = εh − ν
(
∂k1/2

∂xn

)2

, εh |xn=0= ν

(
∂k1/2

∂xn

)∣∣∣∣2
xn=0

. (2.19)

The ε reproduced in a plane channel, using this approach, is very similar to, and in
some respects better than, that obtained by the standard formulation. However, in
addition to a better physical foundation of the derivation of the εh equation, a major
advantage is achieved in evaluating the individual dissipation rate components εij or
εhij , which become important for second-moment closures.

Whatever procedure is adopted, a model for the ε (or εh) equation is required. A
more accurate term-by-term modelling for this equation is given in the next section.
We show that decisive advantages are achieved if the equation for the homogeneous
dissipation rate εh is solved instead of the total ε, though for some of the terms
discussed below this may be irrelevant. In fact, in the final model we abandon
completely ε as the scale-providing variable and use instead εh, as will be shown below.
However, the discussion that follows is applicable equally to ε and εh equations.

† The only change in the discretized form of the equations for uiuj and εh is in the contribution
to the discretization coefficients by molecular diffusion, which is now devided by factor 2, providing
in such a way the (desired) implicit treatment of the non-homogeneous part of the stress dissipation
rate.
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3. Term-by-term modelling of the ε (and εh) equation
The exact equation for the dissipation rate can be written as

Dε

Dt
= −2ν

(
∂ui

∂xl

∂uk

∂xl
+
∂ul

∂xi

∂ul

∂xk

)
∂Ui

∂xk︸ ︷︷ ︸
P 1
ε + P 2

ε

−2νuk
∂ui

∂xl

∂2Ui

∂xk∂xl︸ ︷︷ ︸
P 3
ε

−2ν
∂ui

∂xk

∂ui

∂xl

∂uk

∂xl︸ ︷︷ ︸
P 4
ε

− 2

(
ν
∂2ui

∂xk∂xl

)2

︸ ︷︷ ︸
Y

+
∂

∂xk

(
ν
∂ε

∂xk

)
︸ ︷︷ ︸

Dν
ε

+
∂

∂xk

(−ukε′)︸ ︷︷ ︸
Dt
ε

+
∂

∂xk

(
−2ν

ρ

∂p

∂xi

∂uk

∂xi

)
︸ ︷︷ ︸

Dp
ε︸ ︷︷ ︸

Dε

, (3.1)

with conventional notation for different terms. The physical meaning of the terms
can be found, e.g. in the paper by Mansour et al. (1988).

A reformulation of some of the terms in the ε equation is now described.

3.1. The mixed production term

First consider the ‘mixed’ production term

P 1
ε + P 2

ε = −2ν

(
∂ui

∂xl

∂uj

∂xl
+
∂ul

∂xi

∂ul

∂xj

)
∂Ui

∂xj
. (3.2)

This term is regarded as negligible in high-Re flows. The major production of ε, Pε4,
associated with the self-stretching of the fluctuating vortices is usually modelled in
terms of the energy production Pk = −uiuj∂Ui/∂xj , scaled with the characteristic
turbulence time scale k/ε.

It should be recalled that the first term in the bracket is in fact εij . The second
term is closely related to εij – they contain common terms. DNS data for near-wall
flows show that εij remains anisotropic beyond the viscosity-affected wall region, even
at higher Re. Now, if εij can be modelled satisfactorily by equation (2.13), this term
can be retained in its exact form. Of course, away from the wall and at high Re, εij
becomes isotropic irrespective of the stress anisotropy and this term is not sufficient
to account for total production of ε so that the standard production term should
be retained, although with a smaller coefficient. Figure 6 presents a new production
model in a plane channel. The new model consists of the sum of the new and the
standard terms, the latter with Cε1 = 1:

P 1
ε + P 2

ε = −εij ∂Ui

∂xj
− 1.0 uiuj

∂Ui

∂xj

ε

k
. (3.3)

Note that the same value, Cε1 = 1, was advocated recently both by Craft & Launder
(1996) and Speziale & Gatski (1997), though each in the context of their ε-equations,
which differ from each other and from the one considered here.

In addition to better reproduction of the exact terms than achieved by the standard
term alone with Cε1 = 1.44, the new model offers additional flexibility, which should
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Figure 6. New model of mixed production P 1
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ε : (a) for the conventional ε equation, and
(b) for the new εh equation. Plane channel flow, Rem = 5600. Symbols: DNS data, Kim et al.

be particularly useful in non-equilibrium flows subjected to strong linear straining.
This becomes obvious if P 1

ε is expanded into components. For two-dimensional flows

P 1
ε = −ε12

∂U1

∂x2

− (ε11 − ε22)
∂U1

∂x1

. (3.4)

Recall that the conventional model of the production of ε, Pε = Cε1Pkε/k, fails in
reproducing non-equilibrium flows, particularly with strong irrotational strain (e.g.
axisymmetric contraction, boundary layers in strong pressure gradients). Hanjalić
& Launder (1980) proposed sensitizing the production Pε to irrotational strain by
increasing the coefficient Cε1 from 1.44 to C ′ε1 ≈ 4.44,† and introduced a new term,
(C ′ε1 − Cε1)Cµ kΩijΩij (where Ωij is mean flow rotation tensor), which ensured that
the model reduces to the conventional form in equilibrium thin shear flows, where

u1u2 ≈ −C1/2
µ k, with Cµ = 0.09. The net effect is visible in two-dimensional flows,

where in addition to the conventional production, another source term, (C ′ε1−Cε1)(u2
1−

u2
2)k/ε∂U1/∂x1, appears in the ε-equation.
We show here that such an enhancement of the production of ε is now accounted for

by the new formulation of P 1
ε , and no additional term is necessary. While u1u2/(u

2
1−u2

2)
is of the order of magnitude of 1, making the production by both the rotational and
irrotational strain of equal importance, ε12/(ε11 − ε22) is much smaller than 1, except

† Later, some authors adopted different values e.g. Jakirlić & Hanjalić (1995) used C ′ε1 = 2.6.
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very close to the wall (Hanjalić & Jakirlić 1993). Hence, the term will itself distinguish
the effect of the irrotational from the rotational strain in the production of ε.

Unfortunately, no information about individual terms in the exact equation for
ε is available for any other flows. Hence, further direct validation of the model
proposed above for P 1

ε + P 2
ε in more complex flows remains to be done. However,

some insight can be gained by comparing the terms in the model equation (3.3) with
the conventional model of the production of ε, i.e.

P 1
ε + P 2

ε = 1.44Pk
ε

k
. (3.5)

Figures 6 to 8 show such a comparison for fully developed plane channel flows,
several positions in a backward-step flow, and for fully developed axially rotating
pipe. The conventional model drastically underestimates the total DNS production in
a channel flow, which is compensated by the model of the sink term Y , which is also
underestimated as shown in figure 11(a) (see also figures 23 and 24 in Mansour et al.
1988). Hence, the present disagreement between the new and conventional model is
expected. In contrast, the new model of P 1

ε + P 2
ε , equation (3.3) reproduces very well

the DNS data for a plane channel, both using the total dissipation ε, figure 6(a), or
homogeneous dissipation εh, figure 6(b). The DNS results in figure 6(b) and for other
terms in the εh equation discussed in the the following sections are from Jovanović et
al. (1995), which were derived from the DNS results of Kim, Moin & Moser (1987). It
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is worth noting that the term P 1
ε becomes smaller if εh is used, reducing the difference

between the new model, equation (3.3), and the conventional model, equation (3.5)
(solid and chain lines in figure 6). Figures 7 and 8 show only the comparison between
the new and conventional models, equations (3.3) and (3.5), for several positions
within the separation bubble and recovery region in a backward-step flow, and in a
rotating pipe for two rotation numbers, using εh. Note the new term with tangential
velocity derivative in figure 8, which produces a substantial difference in rotating pipe
flow. No DNS data are available for the budget of ε, so that a direct validation is not
possible.

3.2. The gradient production term

Term P 3
ε , referred as the gradient production of ε, is defined as

P 3
ε = −2νuk

∂ui

∂xl

∂2Ui

∂xk∂xl
. (3.6)

Current practice assumes a simple gradient model uk∂ui/∂xl ∝ τujuk(∂
2Ui/∂xj∂xl),

where τ = k/ε, yielding the term with the squared second velocity derivative. The ex-
pression follows from the Taylor vorticity transport approach and is a rigid constraint
because it does not allow for a proper sign of the curvature of the mean velocity
profile. Bernard’s vorticity transport theory (Bernard 1990) provides a more rational
method (J. R. Ristorcelli, private communication). The turbulent velocity gradient
flux is expanded into

uk
∂ui

∂xl
=

(
∂ukui

∂xl
− ui ∂uk

∂xl

)
=

(
∂ukui

∂xl
− uiskl − uiωkl

)
, (3.7)

where skl and ωkl are the fluctuating strain rate and vorticity respectively. The first
term is now exact. The second term needs modelling. The third term is omitted since
it is antisymmetric in its indices while the velocity curvature term is symmetric. For
the two-dimensional near-equilibrium wall layer

∂2Ui

∂xk∂xl
=

∂2U1

∂x2∂x2

δi1δk2δl2, (3.8)
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the term u1s22 can be expanded, using the continuity equation, to produce

u1s22 = −1

2

∂(u2
1 − u2

3)

∂x1

− ∂u1u3

∂x3

− u3ω2, (3.9)

where ωi = −εijk(∂uj/∂xk). The first two terms can be neglected because of spanwise
and streamwise homogeneity. The results of Bernard (1990) are used to close u3ω2:

u3ω2 =
1

2

Q4

1 + Q3Q4(∂U1/∂x2)2

∂u2
3

∂x2

∂U1

∂x2

, (3.10)

where Q3 and Q4 are the Lagrangian integral scales, defined as
∫ 0

τ
Sijk(t)/Sijk(0)dt for

non-zero components of the time correlation Sijk = ui(t0)∂uj(t0 + t)/∂xk . For a fully
developed channel flow, Bernard (1990) recommended Q3 = 0.65 and Q4 = 10.8.

The profile of u3ω2 obtained from expression (3.10) for the channel flow is compared
with the DNS data in figure 9(a). The agreement seems qualitatively acceptable.
However, the insertion of u3ω2 in equation (3.7) and subsequently in equation (3.6)
for the complete production term yields P 3

ε which differs both in magnitude and in
sign from the DNS results in the near-wall region, figure 9(b).

A substantial improvement is achieved if ∂u2
3/∂x2 is replaced by ∂u2

2/∂x2, and the
Bernard time-scale function Q4/(1 + Q3Q4(∂U1/∂x2)

2) by k/ε, figure 10(a), yielding
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the expression for P 3
ε

P 3
ε = −2ν

∂u1u2

∂x2

∂2U1

∂x2∂x2

− 0.4ν
k

ε

∂u2
2

∂x2

∂U1

∂x2

∂2U1

∂x2∂x2

. (3.11)

The plot of each term in expression (3.11) and of their sum, i.e. the complete model
of P 3

ε computed from DNS data for a plane channel, is presented in figure 10(b),
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showing good agreement with the DNS. Figure 10(c) shows the comparison of this
term with its homogeneous counterpart P 3

εh
(dashed line).

Note that the expression (3.10) reduces to that proposed by Rodi & Mansour

(1993), which was derived in the framework of the k− ε model, if ∂u2
3/∂x2 is replaced

by ∂k/∂x2. For a general second-moment closure, (3.11) can be generalized into the
tensor invariant form

P 3
ε = −2ν

(
∂ukui

∂xl

∂2Ui

∂xk∂xl
+ Cε3

k

ε

∂ukul

∂xj

∂Ui

∂xk

∂2Ui

∂xj∂xl

)
, (3.12)

where Cε3 = 0.2.

3.3. Production–destruction term

For the two remaining terms, representing the difference between the turbulent pro-
duction and viscous destruction of ε, which represents the major source of dissipation
at high Re, Hanjalić & Launder (1976) proposed a joint model

P 4
ε − Y = −2ν

∂ui

∂xk

∂ui

∂xl

∂uk

∂xl
− 2

(
ν
∂2ui

∂xk∂xk

)2

= −Cε2fε εε̃
k
, (3.13)

where ε̃ = ε− 2ν(∂k1/2/∂xl)
2. The plot of expression (3.13) with the original function

fε and the modified one proposed by Coleman & Mansour (1993), shows poor
agreement close to the wall for both models, figure 11(a). For illustration, the proposal
of Durbin to replace in the model (3.13) the time scale τ = k/ε by the Kolmogorov

scale τK =
√
ν/ε, when τK becomes larger than τ/6, is presented, also showing poor

agreement. In contrast, the application of the same model using the homogeneous
dissipation rate, i.e. −Cε2fεεhε̃h/k, where ε̃h = εh − ν(∂k1/2/∂xl)

2 (2.19), yields much
better agreement with the DNS data, as shown in figure 11(b).

3.4. Balance of the production and destruction terms

What we need is the sum of all source and sink terms in the equation, which balances
the convection and diffusion. Figure 12 shows the sum P 1

ε +P 2
ε +P 3

ε +P 4
ε −Y for fully

developed plane channel flow. As expected, because of zero convection and small
diffusion (see below), this sum is small all across the flow. In spite of the very good
a priori reproduction of the individual terms shown above, the plot of their sum on
an expanded scale displays some small imperfections, and agreement with the DNS
data is not perfect, especially in the buffer region for y+ between 7 and 18 for the Re
considered. However, with the new εh equation, agreement is substantially improved
and is much closer than with the conventional ε equation. In more complex, non-
equilibrium flows, where the transport terms are significant and where the imposed
flow conditions (strain rate, pressure gradient, body forces) will cause different source
terms to depart from equilibrium, the importance of reproducing accurately the
individual terms should matter and hopefully the total sum of source terms should
agree better. Unfortunately, due to the lack of DNS (or other) data for individual
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terms in ε or εh equation in flows other than in a plane channel makes it at present
impossible to validate this expectation. The only way to test the model is to verify
the outcome of model application by comparing the mean-flow parameters and the
second moments computed from the complete model with the available DNS and
experimental results. This is presented in § 4.
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3.5. Transport terms

The term Dt
ε, representing diffusion transport of ε due to velocity fluctuations, is

commonly modelled by applying the general gradient diffusion hypothesis (Daly &
Harlow 1970):

Dt
ε =

∂

∂xk

[
Cε
ε

k
ukul

∂ε

∂xl

]
. (3.14)

The plot of this term compared with the DNS results, figure 13, shows a poor agree-
ment in the immediate wall vicinity: y+ < 10. Bearing in mind that the contribution
of this term to the overall budget of the ε equation is weak when compared with
the production and destruction terms (see previous sections), this simple formulation
was also applied to model homogeneous dissipation (dashed line in figure 13). For
completeness, the pressure transport term Dp

ε obtained by DNS (Mansour et al. 1988)
is also displayed in figure 13. Because of its small value, this term was not further
considered.

3.6. The complete εh equation

The final form of the new model dissipation equation, expressed solely in terms of εh

can now be written as

Dεh

Dt
= −εhij ∂Ui

∂xj
− uiuj ∂Ui

∂xj

εh

k︸ ︷︷ ︸
P 1
εh + P 2

εh

−2ν

(
∂uiuk

∂xl

∂2Ui

∂xk∂xl
+ Cε3

k

εh
∂ukul

∂xj

∂Ui

∂xk

∂2Ui

∂xj∂xl

)
︸ ︷︷ ︸

P 3
εh

−Cε2fε ε
hε̃h

k︸ ︷︷ ︸
P 4
εh − Y

+
∂

∂xk

[(
1

2
νδkl + Cε

εh

k
ukul

)
∂εh

∂xl

]
︸ ︷︷ ︸

1
2
Dν
εh +Dt

εh

. (3.15)

It is noted that in spite of its extended form with several additional terms compared
with the conventional equation for high-Reynolds-number flows, equation (3.15)
contains only three empirical coefficients.

This equation can now be solved with the model equation for turbulent stress uiuj
that contains conventional modifications for near-wall and viscosity effects, but with
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Figure 14. Computed εh and ε in fully developed channel flow by the new model of the εh equation
(only the εh equation was solved). Plane channel, Rem = 5600. Symbols: DNS data from Kim et al.

εhij as the sink term and with the factor 1/2 in front of the viscous diffusion term, as
follows from equation (2.13). Note that the full dissipation rate ε does not appear at
all in the model and need not be considered.

In the following section we present some results for several flows computed with
the new εh equation in conjunction with the low-Reynolds-number equations for uiuj
of Jakirlić & Hanjalić (1995) and Hanjalić & Jakirlić (1998). The full set of equations
and coefficients is given in Appendix A.

4. Illustration of model performance
Despite faithful a priori reproduction of the dissipation tensor components εij , i.e.

εhij (equations (2.6) and (2.14)), and of each term in the εh equation (3.15), these
models can gain full credibility only if solved numerically in the framework of a full
computational scheme, i.e. in conjunction with a model Reynolds-stress equation.

First, only the transport equation for the ‘homogeneous’ energy dissipation rate
εh was numerically integrated, using the DNS data for all input variables. The final
outcome is shown in figures 14 and 15 where the reproduction of εh and of the total
ε by solving the new equation is presented for a plane channel flow and a flow in an
axially rotating pipe.

Whereas the results obtained for a plane channel flow agree very well with the
DNS data, this is not the case for the axially rotating pipe flow. This is especially
visible in the immediate wall vicinity (y+ 6 5). The most likely reason lies in the DNS
data for Reynolds stresses, which were used as input variables. They are obviously
not absolutely exact, bearing in mind that wall values of both energy dissipation
rates, ε and εh, are completely determined by the streamwise and lateral normal stress
components, u1u1 and u3u3 respectively (see further discussion). The effect of the
Rubinstein & Zhou (1997) term, causing reduction of the dissipation rate level in
rotational flows, is also illustrated in these figures.

Further illustrations, using the full model in conjunction with the HJ low-Reynolds-
number transport equation for uiuj (see the Appendix), are provided in figures 16
to 19 for fully developed channel and pipe flows, zero-pressure-gradient boundary
layers, flow in an axially rotating pipe, and for flow over a backward-facing step.

We regard these results in general as satisfactory, particularly in view of the
fact that a single model with a single set of empirical coefficients and functions
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was used to compute several flows with distinct mean flow and turbulence features,
including separation, reattachment and flow rotation. Generally, there is still room
for improvement, e.g. for rotating pipe (figure 18) and for better reproducing the
DNS value of dissipation at the wall (figures 17 and 18). The latter, however,
cannot be attributed to the εh equation, but to the model of the pressure–strain
and pressure diffusion, which balance the (exact) viscous diffusion and dissipation
rate in the near-wall region. The predicted behaviour of turbulent stresses governs
the boundary conditions for εh, and thus influences its predicted near-wall behaviour:
εhwall = 1

2
(b1b1+b3b3), where b1b1 and b3b3 are coefficients in the Taylor-series expansion

of u1u1 (u1u1 = b1b1y
+2 +· · ·) and u3u3 (u3u3 = b3b3y

+2 +· · ·) respectively. For example,
the model slightly underpredicts u3u3, as seen in figure 18 (denoted as w), which in
turn yields smaller values of εh at the wall. Hence, the results presented should serve
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1
y+

10

0.10

0

100

0.20

0.25

0.15

25

15

5

1001
y+

eh+

(a) (b)

0

0.5

10

U+

v+

w+

u+
, v

+
, w

+

N = 0.00

Lines: HJ low–Re RSM + Deh/Dt

0

0

0
y+

150

3 0.8

0.2

0.41.0
r/R

(c) (d )

1

2

0.2

uv
+

0

0
50 100 0.8 0.6 0

u+

0.4

0.6

N = 0.32
N = 0.00
N = 0.32

N = 0.00
N = 0.32

Figure 18. Computed (a) εh, (b) mean velocities and (c, d ) stress components in an axially rotating
pipe flow (N = 0 and N = 0.32) using the new model of the εh equation in the framework of HJ
low-Re RSM. Symbols: DNS Eggels et al.



Modelling near-wall turbulence energy and stress dissipation 161

0.5
y/H
1.0

0

2.0

0.010 0.010

0.005

0

10.01

(a)

(b)

0
0.1

x/H = 6
Lines: HJ low–Re RSM + Deh/Dt

0

0

0 1.5

0.20

2.0

0.5

0.0060
–uv/U0

2

(c)

0.10

0.15

0.0100.5 1.0 0.002 0.004 0.012

u/U0

1.0

1.5

10
0.005

0

0 1.5

0.008

2.5

y/H

0.05

15

x/H = 6
10

15

y/H

3

2

1

0 0 0 0 0 0 0 0.3 0.6 0.9

191510642x/H = 0

Symbols: Exp.

DNS
HJy

h

U/U0

Symbols: DNS, Le et al.

eh H
/U

03

eh H
/U

03
u i/U

0

Empty symbols: DNS, Le et al.
Filled symbols: Exp., Jovic & Driver
Lines: HJ low–Re RSM + Deh/Dt

Empty symbols: DNS, Le et al.
Filled symbols: Exp., Jovic & Driver
Lines: HJ low–Re RSM + Deh/Dt

2.0

y
H

x/H = 6

v/U0
w/U0

Figure 19. Computed (a) εh, (b) stress components and (c) mean velocities at selected locations in
the flow over a backward-facing step using the new model of the εh equation in the framework of
HJ low-Re RSM. ReH = 5000, ER = 1.2.

as an illustration of the potential of the new model for εh and εhij which, in principle,
can be used in conjunction with other low-Reynolds-number second-moment or
eddy-viscosity closures.

These results are admittedly slightly inferior for the near-wall region compared with
results shown in figures 3 to 5, obtained in an a priori way. Two sources of discrepancy
were discovered: the inadequacy of the model of the off-diagonal components of εhij ,
and a slight imbalance of the model equation for the wall-normal stress component
u2u2 at the wall (related to equation (2.15)). Although the off-diagonal components of
εhij are small compared with the diagonal ones in wall-equilibrium and backward-step
flows – though not in a rotating pipe, their proper modelling becomes important if
the new model of the mixed production, equation (3.3), is to be used. We discuss
some possible improvements of the model for εhij that will remedy this deficiency in

the next section. Fortunately, the use of εh as the scale-providing variable reduces the
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importance of the term εhij∂Ui/∂xj in equation (3.3): as shown in figures 6, 7 and

8, the conventional form of the model P 1
ε + P 2

ε = 1.44 Pεh/k reproduces reasonably
well the complete mixed production term (much better than when ε is used) and in
the illustrations above (figures 16 to 19) we used this conventional expression. The
slightly deficient wall imbalance of the u2u2-equation affects only the asymptotic wall
behaviour of u2u2, but has a marginal effect on the other variables. This deficiency
can be overcome by introducing, e.g., the ‘pressure diffusion’ correction of Launder
& Tselepidakis (1993)†, as shown in figure 20.

5. Revision of the algebraic model for εij
In § 2.1 we discussed the common expression for εij and outlined the current practice

in defining the ‘blending’ function fs in terms of turbulence Reynolds number and
invariants of the stress and dissipation rate anisotropy tensors. Good agreement with
DNS data was demonstrated for diagonal components of εij , but agreement was
less satisfactory for the off-diagonal components (here ε12). Since in the approach
proposed here ε12 plays an important role in reproducing the production term P 1

ε

close to a solid wall, an improvement in the modelling of εij with a particular focus
on off-diagonal components becomes more important. This is even more the case
with other off-diagonal components in three-dimensional and non-equilibrium flows,
such as in an axially rotating pipe, where ε23 combines with ∂W/∂r in the mixed
production term.

Hanjalić & Launder (1976) argued that the blending function should account not
only for the viscous effects and stress anisotropy, but also for the amount of mean
shear felt by dissipative eddies during their lifetime. The argument was that the
strain rate will impose a directional orientation on eddies of all sizes including the
small-scale dissipative ones, particularly close to a solid wall where the eddy scales are
generally small. The ratio of the dissipation (Kolmogorov) time scale τK = (ν/ε)1/2 to

† The molecular diffusion and dissipation rate dominate the exact wall balance in the
u2u2-equation, when the conventional dissipation rate is used: Dp

22 + Dν
22 − ε22 = −4c2c2y

2 +
12c2c2y

2 − 8c2c2y
2 = 0, and accounting for the pressure diffusion was not that important. This

was the reason for neglecting pressure diffusion in the original HJ model. However, the influence
of molecular diffusion and dissipation rate in the near-wall balance is reduced by factor 2 when
using the ‘homogeneous’ stress dissipation rate, and accounting for the pressure diffusion becomes
important.
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the time taken by the mean strain to deform the small eddies, i.e. τK/τS = (ν/ε)1/2S
where S =

√
SijSij , was proposed as a convenient non-dimensional parameter to

account for the strain effect. However, this idea was not pursued further because of
the lack of information that could verify it.

Here we revisit the above idea by noting that the major deviation of a priori
predictions of ε12 from DNS results occurs in the region where the strain rate effect
on turbulence production is largest, i.e. around y+ ≈ 20 in channel flows, and in the
shear layer behind a backward-facing step. In order to remedy this deficiency, we
examined two possible modifications of expression (2.5) (consistent with the above
introduction of the equation for the homogeneous dissipation rate εh). The first
involves the multiplication of the function fs by the scale ratio τK/τS = τKS . While
this seems attractive and feasible, the test did not show the desired effect: the shape
of the off-diagonal stress dissipation rate ε12 was indeed improved, but the influence
on the diagonal components was too strong. Further tuning could produce better
results, but we turned to a different modification that implies the addition of an extra
term to equation (2.14), so that the complete expression for εhij reads

εhij =

[
(1− fs) 2

3
δij + fs

uiuj

k
+ 2f SijτK

]
εh. (5.1)

Taking the newly introduced function as

f = min

{
AA2,

[
1− exp

(
−Ret

150

)]3
}

(5.2)

yields a significant improvement in the reproduction of ε12 in a plane channel flow,
as shown in figure 21.
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It is noted that expression (5.1) follows from the proposal of Hanjalić & Launder
(1980) mentioned earlier to enhance the effect of irrotational strain in the ε equation
by adding the term CfkΩijΩij . Combined with P 1

ε = εij(∂Ui/∂xj) (equation (3.2)),

these two terms reduce for thin shear flows (for Ωij ≈ Sij ≈ 1
2
∂Ui/∂xj) to

(εij + CfτSijε)
∂Ui

∂xj
. (5.3)

Replacing εij by expression (2.14) and τ by τK , applied to εh instead to ε, leads to
expression (5.1).

The above proposal serves as an illustration of the necessity and possibility of
accounting for the effect of mean rate of strain on εij . Further work, with more
extensive testing in a wider variety of flows, is needed before formulating a general
and definite model.

6. Conclusions
The derivation of the dissipation equation from the two-point covariance and

reformulation of the models of each term, using some novel arguments and the
notions of the vorticity transport theory, shows that it is possible to perform term-
by-term modelling for near-wall turbulent flows in good agreement with DNS data.
Decisive advantages are achieved if the so-called homogenous dissipation εh = ε −
1
2
ν(∂2k/∂xl∂xl) is considered, derived from the two-point velocity correlation equation.

A consistent use of εh and the components of the stress dissipation rate tensor εhij in the
complete model provides several benefits: it ensures satisfaction of wall limits without
using any wall topography parameter, reduces the necessity for empirical inputs and
enables better term-by-term reproduction of DNS data. The model εh equation in
conjunction with a model stress equation, uiuj , where dissipation is also expressed in
terms of εh, constitute a new low-Reynolds-number second-moment closure model.
Both a priori and full model computations of turbulent flows in a plane channel,
constant-pressure boundary layer, behind a backward-facing step and in an axially
rotating pipe, produced results for second-moment turbulence correlations and stress
budget in good agreement with the available DNS results.

We thank Dr. J. R. Ristorcelli, (at present at Los Alamos National Laboratory)
for his valuable contribution to the derivation of the model in § 3.2, while staying at
Delft University of Technology as a J. M. Burgers Centre visiting researcher. We also
acknowledge fruitful discussions with Dr J. Jovanović of the University of Erlangen.

Appendix. Low-Reynolds-number second-moment closure – uiuj – εh

(i) Reynolds-stress equation:

Duiuj
Dt

=
∂

∂xk

[(
1
2
νδkl + Cs

k

εh
ukul

)
∂uiuj

∂xl

]
−
(
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)
+ Φij − εhij .

Pressure–strain model:

Φij = Φij,1 + Φwij,1 + Φij,2 + Φwij,2,

Φij,1 = −C1ε
haij , Φij,2 = −C2

(
Pij − 2

3
Pkδij

)
,

Φwij,1 = Cw
1 fw

εh

k

(
ukumnknmδij − 3

2
uiuknknj − 3

2
ukujnkni

)
,

Φwij,2 = Cw
2 fw

(
Φkm,2nknmδij − 3

2
Φik,2nknj − 3

2
Φkj,2nkni

)
,
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where

C1 = C +
√
AE2, C = 2.5AF1/4f, F = min{0.6;A2},

f = min

{(
Ret

150

)3/2

; 1

}
, fw = min

[
k3/2

2.5εhxn
; 1.4

]
,

C2 = 0.8A1/2, Cw
1 = max(1− 0.7C; 0.3), Cw

2 = min(A; 0.3).

Stress–dissipation rate model:

εhij = (1− fε) 2
3
δijε

h + fε
uiuj

k
εh, where fs = 1−√AE2.

(ii) Dissipation equation:

Dεh

Dt
= −Cε1uiuj ∂Ui

∂xj

εh

k
− 2ν

(
∂uiuk

∂xl

∂2Ui

∂xk∂xl
+ Cε3

k

εh
∂ukul

∂xj

∂Ui

∂xk

∂2Ui

∂xj∂xl

)

−Cε2fε ε
hε̃h

k
+

∂

∂xk

[(
1
2
νδkl + Cε

εh

k
ukul

)
∂εh

∂xl

]
.

Summary of the remaining coefficients: Cs = 0.22, Cε = 0.18, Cε1 = 1.44, Cε2 =
1.80, Cε3 = 0.32, fε = fε = 1− (Cε2 − 1.4)/Cε2 exp[−(Ret/6)2].
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Jakirlić, S. & Hanjalić, K. 1995 A second-moment closure for non-equilibrium and separating
high- and low-Re-number flows. In Proc. 10th Symp. on Turbulent Shear Flows, The Pennsyl-
vania State University, University Park, PA, vol. 3, pp. 23.25–23.30.
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